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DeepReDuce Optimizations Evaluation

Motivation DeepReDuce

Comparison with state-of-the-art in private inference

Deep learning as a service (DLaaS) gives rise to privacy concerns: ReLLUs in neural networks exhibit heterogeneity in terms ot their
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Private Inference

Generality case study with MobileNetV1 on CIFAR-100

ReLUs’ criticality for network’s accuracy. ~ 75
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DeepReDuce works for FLOPs-optimized non-residual
network. Hence, DeepReDuce generalize beyond ResNet

DeepReDuce achieves ReLLU saving with minimal impact on accuracy

by dropping the less critical while preserving most critical ReLLUs.

Comparison with state-of-the-art channel pruning method

ﬁ Encrypted prediction
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In private inference, linear and nonlinear layers use different

cryptographic protocols.

Linear layers use Secret Sharing (cheaper)

Non-linear layers use Garbled circuit (expensive)
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Inverted operator cost in private inference:

» ReLUs are 3 to 4 orders of magnitude slower than convolution [1].
» ReLLUs contribute ~99% in total online latency |2|.

» Employ conventional channel and/or feature map resolution scaling in all the
layers of network to achieve very low ReLLU count.

Baseline network
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Green bars = Layers with ReLUs
White bars = Layers without RelLUs

DeepReDuce outputs a Pareto-frontier of ReLU optimized networks
with different ReLU counts and accuracy:.

2x more ReLLU saving with similar FLOPs and accuracy

on CIFAR-10 (C10) and CIFAR-100 (C100).
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